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Abstract

Large Language Models (LLMs) have demonstrated impressive performance across
various tasks. Nevertheless, deploying LLMs on edge devices presents significant
challenges, primarily due to their substantial model size (e.g., over 10 billion
parameters). Low-precision quantization is a promising way to reduce the memory
requirement of LLMs. However, directly applying ultra-low-bit quantization to
LLMs leads to significant performance degradation and fails to meet a specific
weight memory budget. In this paper, we propose LLM-MQ, a Mixed-precision
Quantization method, to address the above issues. Our method mainly contains
three folds: (1) We propose a sparse outlier protection strategy for low-precision
layers by protecting the outliers in FP16 format to maintain the performance.
(2) We propose sensitivity-based precision allocation to assign the proper bit-
width for each layer within the given budget for weight memory based on their
first-order information and quantization error. (3) We develop efficient CUDA
core kernels to accelerate mix-precision LLMs by fusing the dequantization and
General Matrix-Vector Multiplication (GEMV). With comparable performance on
various tasks, LLM-MQ can flexibly quantize LLMs that meet the given budget for
weight memory. On NVIDIA T4 GPU, we achieve up to 1.6× end-to-end speedup
compared to the pytorch FP16 baseline.

1 Introduction

Large language models (LLMs) have exhibited impressive performance across various language tasks.
Recently, LLMs have led to the emergence of many interesting and helpful applications, such as
ChatGPT (11), Copilot (2). However, deploying LLMs on edge devices has been challenging due
to the enormous model size. For example, the LLaMA-2-70b model (15) needs at least 140 GB of
memory for deployment. Even the NVIDIA A100 GPU with 80 GB memory is not enough to deploy
this model. It is especially not enough for devices with limited memory capacities.

To meet the demands of edge inference scenarios where model size constraints are paramount, the
memory overhead of weights is the main bottleneck. Consequently, low-precision weight-only
quantization can effectively reduce the memory requirement of LLMs. Furthermore, numerous
methods (8; 6; 12; 14; 7) have been developed, all of which employ a consistent low-bit-width
representation across all layers. They successfully quantize the FP16 LLMs into 4-bit or 3-bit LLMs
with acceptable performance. However, for edge devices with more limited memory budgets, it is
challenging to push the bit-width for each layer to 2-bit without significant accuracy loss.
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Figure 1: (a) Sparse Outlier Protection. (i) Baseline methods directly quantize the original FP16
weights into 2-bit, with dramatically accuracy loss (ii) We keep 0.5% outlier at FP16 and quantize the
rest normal weights int 2-bit. (b) Sensitivity-based Precision Allocation. (i) Baseline methods use the
same bit-width for each layer. (ii) We assign lower bit-width to the less sensitive layers.

In this paper, we delve deeper into mixed-precision quantization to address the above issue. Given
that different layers exhibit varying sensitivities to quantization, assigning the appropriate bit-width
to each layer can provide advantages in meeting the specified memory budget while maintaining
minimal accuracy loss. The main contributions of this paper are:

• We propose a sparse outlier protection strategy to only quantize the normal weight into ultra-low
precision and keep the outliers in FP16 format. Experiments show that we can significantly
reduce the accuracy loss using 2-bit quantization.

• We propose a sensitivity-based precision allocation method by modeling the precision allocation
as an integer programming problem. Specifically, we model the given budget for weight memory
as a constraint of the proposed integer programming problem. Experiments show that we can
push the average bit-width into 2.8-bit.

• We design efficient CUDA kernels to accelerate the decoding stage by fusing the dequantization
and GEMV operations and also design a memory arrangement strategy for odd-bit weights to
improve the speed of memory access further. On NVIDIA T4 GPU, we achieve up to 1.6×
end-to-end speedup compared to the pytorch FP16 baseline.

2 Method

2.1 Sparse Outlier Protection

As shown in Fig. 1 (a), while nearly 99.9% of the weights are concentrated around zero, the largest
value is ∼ 107 larger than the mean value. 2-bit uniform quantization results in a quantization error
2.3 × larger than 3-bit uniform quantization, leading to significant accuracy loss. To counteract
this, we introduce sparse outlier protection, retaining 0.5% of outliers in FP16 while applying 2-bit
quantization to the remaining values. This method decreases the error by 1.56 times, approximating
3-bit quantization outcomes. For efficient computation, FP16 outliers are stored using the CSR
format, leveraging the sparse library (1), akin to the SqueezeLLM approach (7)."

2.2 Sensitivity-based Precision Allocation

The primary goal of quantization is to express model weights using low-bit-width representation,
ensuring the changes in the model output remain minimal (5). Since different layers have different
sensitivities, we propose to assign a high bit-width to high-sensitivity layers and a low bit-width to
low-sensitivity layers in order to minimize the change in model output. To pinpoint the more sensitive
layers, we employ the first-order Taylor approximation in Eq. 1 to determine how the model output
changes in response to weight perturbations.

L(Qb(Wi)) ≈ L(W) + gT
i (Wi −Qb(Wi)), (1)

where L is the loss function, gi is the gradient of the loss function with respect to the weight of i-th
layer Wi, and Qb() is the b-bit quantization function. Note that in LLMs, the hessian matrix of
∼15% layers are not positive semi-definite, which means these layers have not converged to a local
minimum. In this case, the second-order information of LLMs struggles to show the change of loss
function accurately. We focus on the first-order information:

min |L(Qb(Wi))| ≤ |L(Wi)|+min |gT
i (Wi −Qb(Wi))| = |L(Wi)|+min si,b, (2)
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(a) Original Distribution (b) Distribution w/o 0.5% Outliers
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Figure 2: (a) Directly apply 2-bit quantization to the original weight. (b) Only apply 2-bit quantization
to the normal value while keeping 0.5% outliers in FP16 format.
where si,b stand for |gT

i (Wi −Qb(Wi))|. We minimize the sum of si,b for all layers to minimize
the change of loss function. In addition, we propose to use three different bit-width, that is 2, 3 and 4.
We model the above bit-width allocation task as the following integer programming problem:

argmin
ci,b

N∑
i

∑
b

ci,b · si,b, (3)

∑
b

ci,b = 1,

N∑
i

∑
b

ci,b · M(Qb(Wi)) ≤ B, (4)

ci,b ∈ {0, 1} , b ∈ {2, 3, 4} , (5)

where Qb is the b-bit quantization function, B is the budget for weight memory of a certain device,
M is the function to calculate memory usage of weights, N is the layer number of the target LLM,
and ci is the one-hot indicator of i-th layer to determine its proper bit-width. We use the budget for
weight memory as a constraint of the optimization objective. With the help of the efficient integer
programming solver, we can find a proper bit-width allocation scheme within a few seconds.

2.3 Efficient GPU Kernel Design

To maximize the utilization of the GPU’s memory resources, we store two 4-bit weights in one byte.
Eight 3-bit weights become three bytes, and four 2-bit weights are represented by one byte. To
accelerate the inference of quantized models, we integrate weight dequantization with GEMV in our
implementation, reducing memory access overhead. Additionally, we utilize the CUDA core instead
of the Tensor core as employed in AWQ (8), primarily for two reasons: (1) The Tensor Core requires
that each dimension of the inputs be at a minimum of eight, which is not required in the CUDA Core.
In the GEMV operator, the minimal dimension of the inputs is one. Using zero-padding to expand
the minimal dimension to 8 introduces inefficiencies. (2) The latency of GEMV latency is primarily
dictated by model weight memory access, and the enhanced computational capacity of the Tensor
Core does not alleviate this primary bottleneck.

3 Experiments

We focus on weight-only quantization with a group size of 128 (i.e., every 128 data points share a
scaling factor and a zero point.). We also use the reparameterization strategy introduced in AWQ (8).
We conduct experiments of the proposed LLM-MQ on various benchmarks using LLaMA2 (15)
and OPT (17) families. We assess the performance of quantized models across several benchmarks,
The evaluation code is based on lm-harness-evaluation 1. These include five zero-shot benchmarks:
PIQA (3), HellaSwag (16), WinoGrande (13), ARC-e (4), and OpenBookQA (10). Additionally,
we evaluate the model on a language modeling task using the Wiki benchmark (9). Tab. 1 presents
the primary results for LLaMA2-13B, while the performance of other LLMs are detailed in the
Appendix. Furthermore, in Tab. 1, we have not factored in the FP16 sparse weights when calculating
the average bit-width, as they have a minimal impact, increasing it by a maximum of 0.08 bits, which
is negligible.

The effect of the sparse outlier protection. As shown in Tab. 1, in the 3-bit and 4-bit quantization,
RTN (Round-To-Nearest), AWQ and SqueezeLLM have no significant performance degradation.

1https://github.com/EleutherAI/lm-evaluation-harness
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Table 1: The performance of the LLaMA2-13B model on five zero-shot benchmarks by reporting
their average accuracy and one language modeling task using perplexity.

Method #Bit PIQA Hella. Wino. Arc-e OpenBookQA Avg. (↑) Wiki (↓)

LLaMA2-13B 16.0 79.11 76.59 69.77 57.91 42.00 65.08 7.89

RTN
4.0 79.16 75.90 69.61 56.69 42.00 64.67 8.12
3.0 77.15 73.68 67.64 56.90 40.80 63.23 9.26
2.0 56.47 37.94 51.30 30.77 32.20 41.74 1056.33

AWQ (8)
4.0 79.00 76.14 70.32 57.49 42.20 65.03 8.08
3.0 77.91 74.62 69.77 56.02 41.80 64.02 8.81
2.0 50.76 25.69 50.28 26.98 31.60 37.06 5e6

SqueezeLLM (7) 4.0 78.94 76.05 69.14 57.70 42.80 64.93 8.44
3.0 78.62 74.53 67.40 56.73 40.20 63.50 9.29

LLM-MQ

4.0 79.49 76.31 69.30 58.50 41.20 64.96 8.03

(Ours)

3.8 79.22 76.22 69.85 58.29 41.40 65.00 8.08
3.6 79.05 75.88 69.77 58.59 42.20 65.10 8.23
3.4 79.49 74.77 69.61 58.12 40.60 64.52 8.61
3.2 79.33 75.12 67.96 57.87 41.60 64.38 8.43
3.0 79.00 75.08 68.59 57.79 41.00 64.29 8.54
2.8 78.73 74.32 67.96 57.95 41.20 64.03 8.83
2.6 78.35 73.81 68.03 57.32 39.40 63.38 9.35
2.4 77.31 72.93 68.59 54.63 40.00 62.69 10.03
2.2 76.77 70.83 67.09 55.26 38.40 61.67 10.80
2.0 75.84 68.32 65.51 54.29 37.20 60.23 12.17

However, in 2-bit quantization, the performance of RTN degrades significantly on all tasks. The
performance of AWQ is even worse than RTN, especially on the Wiki benchmark. In LLM-MQ, we
only protect the top 0.5% of the largest value in each layer in FP16 format and quantize the rest of the
normal value to 2-bit. The average accuracy of LLM-MQ on zero-shot tasks is 23.17% and 19.16%
better than AWQ and RTN. On the Wiki benchmark, the perplexity of LLM-MQ is more than two
orders of magnitude lower than that of other methods.

The effect of the sensitivity-based precision allocation. As depicted in Tab. 1, for 3-bit and 4-bit
quantization, RTN (Round-To-Nearest), AWQ and SqueezeLLM do not have significant performance
degradation. As the average bit-width decreases, the performance across all tasks decreases gradually.
Furthermore, the performance loss of LLMs is more significant at lower average bit-widths. We
observed that when the average bit-width remains above 2.8 bits, the performance decline is notably
gradual, with sporadic instances of slight improvement. While quantizing the model to the average
bit-width of 3.6bit and 2.8bit, performance degradation remains under 0.5% in comparison to AWQ’s
4bit and 3bit models. In this case, if the target device is limited to deploying models with an average
bit-width of 2.8 bits, the performance of the LLM-MQ 2.8-bit model significantly surpasses the 2-bit
quantized models of AWQ and RTN.

The efficiency evaluation of the proposed CUDA kernels. In our implementation, the 2-bit and
3-bit kernels do not show significant speedup compared to the 4-bit kernel. The reason is that for
every bit-width, we ensure each thread processes a fixed amount of data. Consequently, during
2-bit and 3-bit quantization, the utilization of GPU bandwidth is less efficient compared to 4-bit
quantization. This hinders a higher acceleration ratio. We deploy our INT4 quantized LLaMA2-7B
model on NVIDIA T4 GPU with 16 GB memory for evaluation. Compared to the original FP16
model, with the output token number of 32, 128, 512, 1024, and 2048, our quantized model with
the proposed CUDA kernels demonstrate end-to-end acceleration factors of 1.27, 1.42, 1.65, 1.64,
and 1.45, respectively. For the proposed GEMV Kernel, the 4096×4096 and 4096×11008 GEMV
kernels are 2.33× and 2.48× faster than CUBLAS FP16 GEMV kernel.
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Appendix

A. Experiment on more LLMs

Table 2: The performance of the LLaMA2-7B model on five zero-shot benchmarks by reporting their
average accuracy and one language modeling task using perplexity.

Method #Bit PIQA Hella. Wino. Arc-e OpenBookQA Avg. (↑) Wiki (↓)

LLaMA2-7B 16.0 76.88 72.95 67.25 53.49 41.00 62.31 8.79

RTN
4.0 77.04 72.57 66.54 55.39 40.00 62.31 9.21
3.0 75.52 71.10 67.01 52.78 40.20 61.32 11.21
2.0 51.31 26.27 49.49 27.40 26.80 36.25 2e6

AWQ (8)
4.0 76.71 72.58 66.69 53.28 41.20 62.09 9.04
3.0 76.66 70.66 65.43 52.65 40.60 61.20 10.30
2.0 49.73 26.14 49.80 26.52 32.40 36.92 1e7

SqueezeLLM (7) 4.0 76.71 72.23 68.27 53.41 40.00 62.12 9.50
3.0 76.50 69.95 65.90 51.47 40.40 60.84 10.56

LLM-MQ

4.0 76.82 72.42 67.96 53.79 41.40 62.48 8.96

(Ours)

3.8 77.09 72.35 67.01 53.41 41.20 62.21 9.04
3.6 76.61 71.85 66.85 52.74 39.80 61.57 9.23
3.4 75.95 71.55 67.25 51.56 41.00 61.46 9.34
3.2 76.39 71.28 64.80 52.57 39.40 60.89 9.52
3.0 76.28 71.03 65.98 51.47 40.00 60.95 9.65
2.8 76.01 70.23 66.22 51.30 39.60 60.67 10.17
2.6 75.03 69.53 64.96 50.13 40.40 60.01 10.96
2.4 74.21 67.67 64.56 48.36 38.20 58.60 12.01
2.2 74.48 65.51 63.85 47.43 37.60 57.77 13.37
2.0 72.31 61.14 59.91 45.88 38.80 55.61 15.93
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Table 3: The performance of the OPT-6.7B model on five zero-shot benchmarks by reporting their
average accuracy and one language modeling task using perplexity.

Method #Bit PIQA Hella. Wino. Arc-e OpenBookQA Avg. (↑) Wiki (↓)

OPT-6.7B 16.0 76.44 67.17 65.19 60.10 37.20 61.22 12.29

RTN
4.0 76.33 65.69 64.09 58.59 37.60 60.46 13.02
3.0 72.42 58.41 59.91 52.40 34.60 55.55 43.15
2.0 49.46 26.08 47.43 24.92 27.60 35.10 2e5

AWQ (8)
4.0 76.39 66.84 64.56 60.10 36.60 60.90 12.44
3.0 75.79 65.45 64.80 57.00 38.00 60.21 12.99
2.0 71.06 56.72 59.91 52.74 35.00 55.09 18.77

SqueezeLLM (7) 4.0 75.79 65.86 63.54 60.27 37.20 60.92 12.45
3.0 75.68 63.96 64.88 58.67 35.40 59.72 13.17

GPTQ (6) 4.0 75.79 65.86 63.54 59.64 38.00 60.57 12.88
3.0 74.32 60.07 62.90 53.91 35.60 57.36 17.87

LLM-MQ

4.0 76.39 67.16 65.11 60.19 37.80 61.33 12.41

(Ours)

3.8 76.39 66.91 65.11 60.10 38.20 61.34 12.46
3.6 76.39 66.32 64.40 59.60 38.20 60.98 12.97
3.4 75.84 65.77 64.88 58.67 39.00 60.83 13.17
3.2 75.73 65.34 65.43 58.92 36.60 60.40 13.48
3.0 76.12 65.93 63.77 59.81 38.20 60.77 12.84
2.8 75.84 65.71 63.30 59.60 38.60 60.61 13.32
2.6 74.97 63.13 64.40 57.66 36.40 59.31 14.94
2.4 75.52 64.14 64.96 58.71 36.40 59.95 14.64
2.2 74.43 62.70 63.38 57.74 36.40 58.93 15.70
2.0 74.27 60.87 61.88 55.93 35.20 57.63 17.09

Table 4: The performance of the OPT-13B model on five zero-shot benchmarks by reporting their
average accuracy and one language modeling task using perplexity.

Method #Bit PIQA Hella. Wino. Arc-e OpenBookQA Avg. (↑) Wiki (↓)

OPT-13B 16.0 76.88 69.81 65.04 61.78 39.00 62.50 11.49

RTN
4.0 76.22 68.21 64.64 62.46 37.80 61.87 11.88
3.0 70.51 45.57 58.17 50.17 33.20 51.52 45.36
2.0 49.46 26.20 49.49 25.25 27.60 35.60 1e6

AWQ (8)
4.0 76.01 69.66 65.43 61.74 39.00 62.37 11.60
3.0 76.55 68.25 64.56 59.97 36.60 61.19 12.03
2.0 71.98 57.07 60.54 50.17 35.20 54.99 16.06

SqueezeLLM (7) 4.0 76.61 68.91 64.88 62.29 39.00 62.34 11.62
3.0 75.30 66.36 64.72 59.01 38.40 60.80 13.37

GPTQ (6) 4.0 76.33 69.02 64.40 60.27 38.00 61.60 11.74
3.0 74.86 64.46 62.43 56.06 35.80 58.72 13.07

LLM-MQ

4.0 76.66 69.37 65.43 61.36 38.00 62.16 11.59

(Ours)

3.8 76.77 69.39 65.27 60.94 39.00 62.27 11.62
3.6 76.22 68.98 64.48 61.74 39.60 62.20 11.82
3.4 76.71 68.86 64.88 62.04 39.20 62.34 11.92
3.2 75.95 67.24 67.09 60.27 37.80 61.67 12.70
3.0 76.22 68.43 64.64 62.08 39.40 62.15 11.99
2.8 74.92 67.13 64.80 61.45 38.00 61.26 12.88
2.6 75.35 66.88 64.56 60.02 36.60 60.68 13.39
2.4 74.70 65.32 64.17 59.09 36.20 59.90 14.45
2.2 74.59 62.59 65.35 57.58 35.00 59.02 15.79
2.0 73.23 60.63 64.17 54.55 34.20 57.36 17.24
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